Determination of the Pointing Offsets and Beam Pattern for the 4-m Telescope

Group: Aryabhatta

INTRODUCTION

The aim of the experiment is to align the 4-m telescope at NCRA East campus with the proper ALT/AZ coordinate system allowing it to be pointed to a given astronomical source. This requires determining the offsets between the electronic reference of the telescope and the astronomical ALT/AZ coordinate system at the observatory.

servations and Analysis

Fitting Gaussian to the intensity plots

Plotting the distribution of residuals

Plotting with data points imean $\pm 2\sigma$

A better plot of residuals...

We have measured the altitude and azimuth of some at specific times. Now we need to find the actual altitude and azimuth to get the offset...

Calculations in Mathematica

<< Calendar` JD1 := DaysBetween[{2009, 2, 1}, {2012, 12, 21}, Calendar → Gregorian] + 2454863.5 (* az1→ 3.60583, az2→ 3.64528, az4→ 4.22944, el1→ 3.83222, el2→ 3.86194, el3→ 4.11167, el4→ 4.12*) RAS = 18.0208;UT = 4.22944; $\phi = \frac{18.5607 \times \pi}{180};$ DECS = (-23.4353) * Pi / 180; GMST1 := Mod [6.656306 + 0.0657098242 * (JD1 - 2445700.5) + 1.0027379093 * UT, 24] LMST1 := Mod $\left[GMST1 + \frac{73.82}{360} \times 24, 24 \right]$ HAS := Module [{ temp = LMST1 - RAS } , If [temp \leq -12, temp = temp + 24, temp = temp]; If [temp > 12, temp = temp - 24, temp = temp]; temp] * Pi / 12 ALTS := ArcSin[Sin[DECS] Sin[ϕ] + Cos[DECS] Cos[ϕ] Cos[HAS]] * 180 / Pi AZMS := Module $\left[\left\{ \text{tempALT} = \frac{\text{ALTS} \times \pi}{180} \right\} \right]$ sinVals = - Sin[HAS] Cos[DECS]
Cos[tempALT]; $cosVals = \frac{Sin[DECS] - Sin[\phi] Sin[tempALT]}{Cos[\phi] Cos[tempALT]};$ $invVals = If[cosVals < 0, \pi - ArcSin[sinVals], ArcSin[sinVals]];$ invVals = If[invVals < 0, 2π + invVals, invVals];</pre> invVals ×180/π

Calculated Offsets

Results:		Actual	Measur ed	Offset	Avg	Deviatio n	Squared Deviatio n	Standar d Deviatio n
Az	1	123.31	127.43	4.12	4.4833	0.3633	0.1320	0.4252
	2	123.53	127.78	4.25		0.2333	0.0544	
	3	128.33	133.41	5.08		-0.5967	0.3560	
Alt	1	26.44	22.30	-4.14	-4.5175	-0.3775	0.1425	0.4296
	2	26.77	21.73	-5.04		0.5225	0.2730	
	3	29.46	25.41	-4.05		-0.4675	0.2186	
	4	29.55	24.71	-4.84		0.3225	0.1040	

Moving to beam-width of the telescope

• Beamwidth = FWHM $\sim 2.35 \sigma$

But how do we know our data is consistent?

Overlapping the altitude scans

Even further !!

Repeating for azimuth scans...

Repeating for azimuth scans...

Calculating FWHM (Beam Width)

FWHM	1	2	3	Average	Standard Deviatio n
Azimuth	4.5326	4.6099	4.6650	4.6025	0.0941
Altitude	3.9746	3.9487	4.0505	3.9913	0.0748

Results from group 5 -

- FWHM for azimuth scan: 4.6120
- FWHM for altitude scan: 3.9995

Expected value of beam width =
$$\frac{\lambda}{D} = \frac{21}{400} \times \frac{180}{\pi} = 3.0080$$

Sources of Errors

- Nearby radio sources in the sky.
- Radio signals from man made sources
 nearby the telescope.
- Reflected radio wave from the surface of

earth/ walls/ trees.

• Non uniform/ broken wire mesh.

Acknowledgements

- NCRA & RPL, for the facilities.
- Dr. B C Joshi, for his guidance.
- Jesu Raja and Abhranil Das for helping us during the experiment.
- Members of Group Einstein and Higgs for sharing their data.

Thank You !

- By-
- Ashish Kumar
- Gupta
- Mayukh Nath
- •Pranay Deep
- Rungta
- Poojan Agrawal
- •Sai Sree Rayala
- Complit Kumor