

INTRODUCTION

Michael Faraday (England):

 In 1845 Discovered
 the First effect
 connecting Magnetism
 and Light,

"The Faraday Rotation Effect".

Faraday Rotation Effect

The incident Plane of linearly polarized light
 Rotates by an angle when it passes through the medium.

"Magnetic Birefringence"

Rotation Angle

 The faraday rotation 'θ' is proportional to Magnetic field and the length traversed.

$$\theta = \frac{\pi d}{\lambda} (n_R - n_L) z$$
 Where, $(n_R - n_L) \propto B$

$$\theta = VBz$$

$$V = \frac{4\pi N e^{3} \omega^{2}}{m^{2} c^{2} (\omega^{2} - \omega_{0}^{2})}$$

$$\omega_{\circ}$$
 = Resonance frequency

EXPERIMENTAL SETUP

Solenoid

- L: 15 cm
- r_1 : 0.88 cm
- r₂: 1.87 cm
- 160 turns/layer
- 10 layers

Finite length (shell):

$$B = \frac{\mu_0 iN}{2L} \left[\frac{z_2}{\sqrt{z_2^2 + r^2}} - \frac{z_1}{\sqrt{z_1^2 + r^2}} \right]$$

Finite Thickness:

$$B = \frac{\mu_0 iN}{2(r_2 - r_1)L} \left[z_2 \ln \frac{\sqrt{z_2^2 + r_2^2} + r_2}{\sqrt{z_2^2 + r_1^2} + r_1} - z_1 \ln \frac{\sqrt{z_1^2 + r_2^2} + r_2}{\sqrt{z_1^2 + r_1^2} + r_1} \right]$$

Magnetic Field along the solenoid length.

We consider a shell of average radius r = 1.38 cm, with same total current

Central Magnetic field as a function of current

Observation Method

Faraday Rotation

New Observation Method

$$\alpha = \tan^{-1} \left(\sqrt{\frac{y}{x}} \right) \qquad \theta = \alpha - \tan^{-1} \left(\sqrt{\frac{y_{rot}}{x_{rot}}} \right)$$

Observations

- We use the New Method to Measure "Faraday Rotation Angle"
- WITH
 - Different Magnet fields
 - Materials: Lead silicate glass, Water, Benzene
 - Laser sourses : Red (650 nm), Green (543 nm)

Faraday Rotation Measured for Lead Silicate Glass

Faraday Rotation Measured for Water

Comparing Verdet Constants

Wavelength Dependence of Verdet

Astrophysical Application of Faraday Rotation Effect

$$\Psi_{obs}(\lambda) = \Psi_{int}(\lambda) + \Delta \Psi$$

$$\Psi_{obs}(\lambda) = \Psi_{int}(\lambda) + \lambda^2 \left(\frac{e^3}{2\pi m_e^2 c^4} \int_0^L n_e(l) B_{\parallel}(l) dl \right)$$

Plotting Y = C + X*RM

Rotation Measure (RM) (rad/m²)

Radio Jet CGCG049-033

- GMRT
- 1.3GHz
- Resolution: 11 arc sec

The largest and highly collimated radio jet ~400kpc large

- VLA
- 1.4GHz
- Resolution = 45 arc sec

- Max Planck 100m
- 8.4GHz
- Resolution = 84 arc sec

Acknowledgement

I wish to thank my guide Prof Bagchi, Prof K Subramanian, Dr Joe Jacob, Viral and all my VSP friends during my stay at IUCAA. ©

