### Sagar Shrivastava Moulik Reddy Pinninty Manas Borah Dixith M Revati Mandage



NATIONAL CENTRE FOR RADIO ASTROPHYSICS



INTER UNIVERSITY CENTRE FOR ASTRONOMY AND ASTROPHYSICS

December 28 2012 (D) (B) (E) (E) E OQC

## 1 Muon

- Discovery
- Properties

## 2 What is this experiment about?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Theory
- Procedure
- How it works



# Outline

## 1 Muon

- Discovery
- Properties
- 2 What is this experiment about?

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

- Theory
- Procedure
- How it works

#### 3 Analysis ■ Graphs

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| Discovery       |          |            |

Muons were discovered by Carl D. Anderson and Seth Neddermeyer at Caltech in 1936, while studying cosmic radiation. Anderson had noticed particles that curved differently from electrons and other known particles when passed through a magnetic field. They were negatively charged but curved less sharply than electrons, but more sharply than protons, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that their mass was greater than an electron but smaller than a proton. Thus Anderson initially called the new particle a *mesotron*, adopting the prefix meso- from the Greek word for "mid-".

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| Discovery       |          |            |

Muons were discovered by Carl D. Anderson and Seth Neddermeyer at Caltech in 1936, while studying cosmic radiation. Anderson had noticed particles that curved differently from electrons and other known particles when passed through a magnetic field. They were negatively charged but curved less sharply than electrons, but more sharply than protons, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that their mass was greater than an electron but smaller than a proton. Thus Anderson initially called the new particle a *mesotron*, adopting the prefix meso- from the Greek word for "mid-". The existence of the muon was confirmed in 1937 by J. C. Street and E. C. Stevenson's cloud chamber experiment.

| Cosmic Ray Muon Detector Experiment |
|-------------------------------------|
| L_Muon                              |
| Properties                          |

(ロ)、(型)、(E)、(E)、 E) の(の)

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| - Muon          |          |            |
| └─ Properties   |          |            |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Charge +/- 1
- Mass 105.658389 MeV

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| └─ Properties   |          |            |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Charge +/- 1
- Mass 105.658389 MeV
- Lifetime 2.19703  $\mu$  sec

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| └─ Properties   |          |            |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Charge +/- 1
- Mass 105.658389 MeV
- Lifetime 2.19703  $\mu$  sec
- Decay (100%) e vv

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| L Muon          |          |            |
| Properties      |          |            |

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Charge +/- 1
- Mass 105.658389 MeV
- Lifetime 2.19703  $\mu$  sec
- Decay (100%) e νν
- No strong interaction

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| Properties      |          |            |

Major sources of muons

Cosmic (decays of pions p $\rightarrow \mu \nu$ ) 10 muons/millisecond, E>1GeV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| Properties      |          |            |

Major sources of muons

Cosmic (decays of pions  $p \rightarrow \mu \nu$ ) 10 muons/millisecond, E>1GeV

#### Accelerators

low Pt muons product of mesons decay,100m long  $40 \mbox{GeV}/\mbox{c}$  pion beam line

| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Muon            |          |            |
| Properties      |          |            |

Major sources of muons

Cosmic (decays of pions  $p \rightarrow \mu \nu$ ) 10 muons/millisecond, E>1GeV

#### Accelerators

low Pt muons product of mesons decay,100m long  $40 \mbox{GeV}/\mbox{c}$  pion beam line

High  $P_t$  muons product of heavy objectsdecays: b,W/Z, etc.

# Outline

#### 1 Muon

- Discovery
- Properties
- 2 What is this experiment about?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Theory
- Procedure
- How it works
- 3 Analysis ■ Graphs

└─ Theory

"Primary" cosmic rays, which are mainly protons (and a few heavier nuclei), interact with nucleons in the earth's upper atmosphere in much the same way that fixed target collisions occur at particle physics laboratories. Some primary cosmic rays can exceed human-made particle detector energies a million-fold. When these primary particles interact with nucleons in the atmosphere, they produce mainly pions and kaons.

```
Cosmic Ray Muon Detector Experiment

What is this experiment about?

Theory
```

In the collisions, if most of the incoming momentum is transferred to an atmospheric proton, the following reactions are common:

$$p + p \longrightarrow p + p + \pi^+ + \pi^- + \pi^0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

> In the collisions, if most of the incoming momentum is transferred to an atmospheric proton, the following reactions are common:

$$p + p \longrightarrow p + p + \pi^{+} + \pi^{-} + \pi^{0}$$
  
 $p + p \longrightarrow p + n + \pi^{+} + \pi^{+} + \pi^{-}$ 

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> In the collisions, if most of the incoming momentum is transferred to an atmospheric proton, the following reactions are common:

$$p + p \longrightarrow p + p + \pi^+ + \pi^- + \pi^0$$

$$p + p \longrightarrow p + n + \pi^+ + \pi^+ + \pi^-$$

If most of the momentum is transferred to a neutron, then these reactions are common:

$$p + n \longrightarrow p + n + \pi^+ + \pi^- + \pi^0$$

> In the collisions, if most of the incoming momentum is transferred to an atmospheric proton, the following reactions are common:

$$p + p \longrightarrow p + p + \pi^+ + \pi^- + \pi^0$$

$$p + p \longrightarrow p + n + \pi^+ + \pi^+ + \pi^-$$

If most of the momentum is transferred to a neutron, then these reactions are common:

$$p + n \longrightarrow p + n + \pi^{+} + \pi^{-} + \pi^{0}$$
  
 $p + n \longrightarrow p + p + \pi^{+} + \pi^{+} + \pi^{-}$ 

```
Cosmic Ray Muon Detector Experiment

What is this experiment about?

Theory
```

The products of such interactions are called "Secondary" particles or "secondary" cosmic rays. Some of these products, however, are very short-lived and generally decay into daughter particles before reaching the earth's surface. The charged pions, for instance, will decay into a muon and a neutrino:

$$\pi^- \longrightarrow \mu^- + \overline{\nu_\mu}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

```
Cosmic Ray Muon Detector Experiment

What is this experiment about?

Theory
```

The products of such interactions are called "Secondary" particles or "secondary" cosmic rays. Some of these products, however, are very short-lived and generally decay into daughter particles before reaching the earth's surface. The charged pions, for instance, will decay into a muon and a neutrino:

$$\pi^- \longrightarrow \mu^- + \overline{\nu_\mu}$$

$$\pi^+ \longrightarrow \mu^+ + \nu_\mu$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

```
Cosmic Ray Muon Detector Experiment

What is this experiment about?

Theory
```

The products of such interactions are called "Secondary" particles or "secondary" cosmic rays. Some of these products, however, are very short-lived and generally decay into daughter particles before reaching the earth's surface. The charged pions, for instance, will decay into a muon and a neutrino:

$$\pi^- \longrightarrow \mu^- + \overline{\nu_\mu}$$

$$\pi^+ \longrightarrow \mu^+ + \nu_\mu$$

Although these reactions are not the only possibilities, they are examples of common reactions that produce secondary particles and their daughters. Counting all secondary particles detected at sea level, 70% are muons, 29% are electrons and positrons and 1% are heavier particles.

What is this experiment about?

Procedure



#### Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BNC signal extension cables.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.
- 5 VDC power supply.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.
- 5 VDC power supply.
- PDU power cable.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.
- 5 VDC power supply.
- PDU power cable.
- Power distribution unit, PDU.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.
- 5 VDC power supply.
- PDU power cable.
- Power distribution unit, PDU.
- Power extension cables for PMTs.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.
- 5 VDC power supply.
- PDU power cable.
- Power distribution unit, PDU.
- Power extension cables for PMTs.
- USB cable.

Hardware required for the experiment:

Counters - Scintillators, photomultiplier tubes and PVC housing.

- BNC signal extension cables.
- QuarkNet DAQ data acquisition board.
- CAT-5 network cable.
- 5 VDC power supply.
- PDU power cable.
- Power distribution unit, PDU.
- Power extension cables for PMTs.
- USB cable.
- Personal Computer.

How it works

Plastic or glass scintillator is mated using optical glue and shaped fittings to PMTs. The scintillators are covered with reflective material (aluminum foil works) and then with black paper and tape to make them "light-tight." They are hooked up to the DAQ which feeds into the parallel port of a computer. When a cosmic ray muon passes through the scintillator, it causes a few photons to be emitted by impurities in the scintillator material. These are picked up by the PMTs, converted to an electrical pulse and amplified. Each PMT sends its signal to the DAQ.

Cosmic Ray Muon Detector Experiment What is this experiment about? How it works

#### **Muon Counting Experiment**

When counting muons, the DAQ looks for "coincidences" - two signals (one from each PMT) which are received within a very short time. These are reported to the computer; all other signals are vetoed as likely noise from the PMTs. The computer can count the number of muons that come in over an interval to get a rate count.

Cosmic Ray Muon Detector Experiment What is this experiment about? How it works

#### **Muon Counting Experiment**

When counting muons, the DAQ looks for "coincidences" - two signals (one from each PMT) which are received within a very short time. These are reported to the computer; all other signals are vetoed as likely noise from the PMTs. The computer can count the number of muons that come in over an interval to get a rate count.

#### **Muon Lifetime Experiment**

Some muons will be of low energy and will lose that energy in the scintillator. Such a muon will remain there for a short time until it decays into an electron and two neutrinos. We cannot detect the neutrinos, but we can detect the electron as it causes a few more photons to be emitted by impurities in the scintillator material. The DAQ measures the time between the "muon signal" and the "electron signal". These double hits and their time intervals are reported to the computer. The data can be fed into a spreadsheet and analyzed to calculate the lifetime of the muon.

Cosmic Ray Muon Detector Experiment

# Outline

## 1 Muon

- Discovery
- Properties
- 2 What is this experiment about?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Theory
- Procedure
- How it works



After running the program, we get a file which is then uploaded to the fermilab website to get a processed file which tells us about the Possible decay length.

After running the program, we get a file which is then uploaded to the fermilab website to get a processed file which tells us about the Possible decay length. From this file we extract the Possible decay length and make a frequency distribution for the possible decay length.

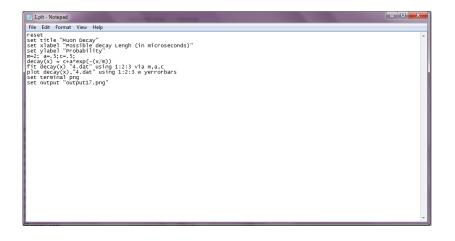
| 6609.3         2456207         92.3425         0.205537         17.5         21.25         1           6609.4         2456207         20.41875         0.207131         13.75         23.75         1 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6609.4 2456207 20.41975 0.207121 0.207121 12.75 22.75 1                                                                                                                                               |  |
| 0005.4 2450207 20.41875 0.207151 0.207151 15.75 25.75 1                                                                                                                                               |  |
| 6609.4 2456207 53.86 0.211838 0.211838 31.25 15 1                                                                                                                                                     |  |
| 7 6609.4 2456207 92.68125 0.219891 0.219891 27.5 17.5 1                                                                                                                                               |  |
| 6609.3 2456207 43.8525 0.225285 0.225285 18.75 18.75 1                                                                                                                                                |  |
| 6609.2 2456207 5.21 0.234063 0.234063 25 20 1                                                                                                                                                         |  |
| 0 6609.3 2456207 98.26249 0.235231 0.235231 11.25 21.25 1                                                                                                                                             |  |
| 1 6609.3 2456207 82.31375 0.237272 0.237272 17.5 17.5 1                                                                                                                                               |  |
| 2 6609.2 2456207 90.14 0.246628 0.246628 15 18.75 1                                                                                                                                                   |  |
| 3 6609.1 2456207 99.1325 0.252243 0.252243 17.5 27.5 1                                                                                                                                                |  |
| 4 6609.3 2456207 0.63001 0.259001 0.259001 26.25 18.75 1                                                                                                                                              |  |
| 5 6609.3 2456207 96.33626 0.265459 0.265459 20 26.25 1                                                                                                                                                |  |
| 6 6609.2 2456207 95.56375 0.288445 0.288445 20 22.5 1                                                                                                                                                 |  |
| 7         6609.2         2456207         67.47123         0.289414         0.289414         27.5         16.25         1                                                                              |  |
| 8 6609.4 2456207 38.46625 0.302191 0.302191 13.76 22.5 1                                                                                                                                              |  |
| 9 6609.2 2456207 65.08126 0.31137 0.31137 12.5 13.76 1                                                                                                                                                |  |
| 0 6609.4 2456207 40.92252 0.31871 0.31871 13.75 22.5 1                                                                                                                                                |  |
| 1 6609.4 2456207 0.68625 0.318902 0.318902 25 18.75 1                                                                                                                                                 |  |
| 2 6609.4 2456207 88.03999 0.324866 0.324866 11.25 16.25 1                                                                                                                                             |  |
| 3 6609.4 2456207 70.19376 0.3324 0.3324 18.75 27.5 1                                                                                                                                                  |  |
| 4 6609.3 2456207 70.575 0.344007 0.344007 15 26.25 1                                                                                                                                                  |  |
| 5 6609.4 2456207 2.92 0.344428 0.344428 21.25 20 1                                                                                                                                                    |  |
| 6 6609.4 2456207 0.65875 0.359193 0.359193 18.75 22.5 1                                                                                                                                               |  |
| 7 6609.4 2456207 53.38374 0.371835 0.371835 15 28.75 1                                                                                                                                                |  |
| 8 6609.3 2456207 0.485 0.373157 0.373157 26.25 11.25 1                                                                                                                                                |  |

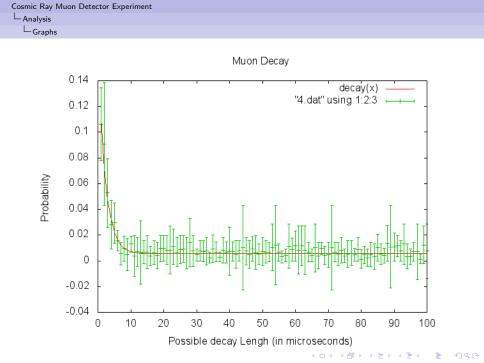
|    | А        | В  | С | D | E | F | G | н | 1 | J | К | L | М |
|----|----------|----|---|---|---|---|---|---|---|---|---|---|---|
| 1  | 65.67999 | 1  | 7 |   |   |   |   |   |   |   |   |   |   |
| 2  | 2.60124  | 2  | 3 |   |   |   |   |   |   |   |   |   |   |
| 3  | 92.3425  | 3  | 4 |   |   |   |   |   |   |   |   |   |   |
| 4  | 20.41875 | 4  | 3 |   |   |   |   |   |   |   |   |   |   |
| 5  | 53.86    | 5  | 3 |   |   |   |   |   |   |   |   |   |   |
| 6  | 92.68125 | 6  | 1 |   |   |   |   |   |   |   |   |   |   |
| 7  | 43.8525  | 7  | 0 |   |   |   |   |   |   |   |   |   |   |
| 8  | 5.21     | 8  | 0 |   |   |   |   |   |   |   |   |   |   |
| 9  | 98.26249 | 9  | 0 |   |   |   |   |   |   |   |   |   |   |
| 10 | 82.31375 | 10 | 1 |   |   |   |   |   |   |   |   |   |   |
| 11 | 90.14    | 11 | 0 |   |   |   |   |   |   |   |   |   |   |
| 12 | 99.1325  | 12 | 0 |   |   |   |   |   |   |   |   |   |   |
| 13 | 0.63001  | 13 | 0 |   |   |   |   |   |   |   |   |   |   |
| 14 | 96.33626 | 14 | 0 |   |   |   |   |   |   |   |   |   |   |
| 15 | 95.56375 | 15 | 0 |   |   |   |   |   |   |   |   |   |   |
| 16 | 67.47123 | 16 | 0 |   |   |   |   |   |   |   |   |   |   |
| 17 | 38.46625 | 17 | 0 |   |   |   |   |   |   |   |   |   |   |
| 18 | 65.08126 | 18 | 1 |   |   |   |   |   |   |   |   |   |   |
| 19 | 40.92252 | 19 | 1 |   |   |   |   |   |   |   |   |   |   |
| 20 | 0.68625  | 20 | 1 |   |   |   |   |   |   |   |   |   |   |
| 21 | 88.03999 | 21 | 1 |   |   |   |   |   |   |   |   |   |   |
| 22 | 70.19376 | 22 | 0 |   |   |   |   |   |   |   |   |   |   |
| 23 | 70.575   | 23 | 1 |   |   |   |   |   |   |   |   |   |   |
| 24 | 2.92     | 24 | 1 |   |   |   |   |   |   |   |   |   |   |
| 25 | 0.65875  | 25 | 1 |   |   |   |   |   |   |   |   |   |   |

<□ > < @ > < E > < E > E のQ @

|    | Α        | В  | С | D        | E | F | G | Н | 1 | J | K | L | M | N |
|----|----------|----|---|----------|---|---|---|---|---|---|---|---|---|---|
| 1  | 65.67999 | 1  | 7 | 0.1      |   |   |   |   |   |   |   |   |   |   |
| 2  | 2.60124  | 2  | 3 | 0.042857 |   |   |   |   |   |   |   |   |   |   |
| 3  | 92.3425  | 3  | 4 | 0.057143 |   |   |   |   |   |   |   |   |   |   |
| 4  | 20.41875 | 4  | 3 | 0.042857 |   |   |   |   |   |   |   |   |   |   |
| 5  | 53.86    | 5  | 3 | 0.042857 |   |   |   |   |   |   |   |   |   |   |
| 6  | 92.68125 | 6  | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 7  | 43.8525  | 7  | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 8  | 5.21     | 8  | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 9  | 98.26249 | 9  | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 10 | 82.31375 | 10 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 11 | 90.14    | 11 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 12 | 99.1325  | 12 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 13 | 0.63001  | 13 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 14 | 96.33626 | 14 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 15 | 95.56375 | 15 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 16 | 67.47123 | 16 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 17 | 38.46625 | 17 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 18 | 65.08126 | 18 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 19 | 40.92252 | 19 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 20 | 0.68625  | 20 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 21 | 88.03999 | 21 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 22 | 70.19376 | 22 | 0 | 0        |   |   |   |   |   |   |   |   |   |   |
| 23 | 70.575   | 23 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |
| 24 | 2.92     | 24 | 1 | 0.014286 |   |   |   |   |   |   |   |   |   |   |

## Taking the average:


|    | Α  | В        | С        | D        | E        | F | G | Н | 1 | J | K | L | M | N |
|----|----|----------|----------|----------|----------|---|---|---|---|---|---|---|---|---|
| 1  | 1  | 0.1      | 0.13467  | 0.099099 | 0.111257 |   |   |   |   |   |   |   |   |   |
| 2  | 2  | 0.042857 | 0.100287 | 0.135135 | 0.09276  |   |   |   |   |   |   |   |   |   |
| 3  | 3  | 0.057143 | 0.060172 | 0.036036 | 0.051117 |   |   |   |   |   |   |   |   |   |
| 4  | 4  | 0.042857 | 0.031519 | 0.009009 | 0.027795 |   |   |   |   |   |   |   |   |   |
| 5  | 5  | 0.042857 | 0.025788 | 0.045045 | 0.037897 |   |   |   |   |   |   |   |   |   |
| 6  | 6  | 0.014286 | 0.022923 | 0.009009 | 0.015406 |   |   |   |   |   |   |   |   |   |
| 7  | 7  | 0        | 0.014327 | 0        | 0.004776 |   |   |   |   |   |   |   |   |   |
| 8  | 8  | 0        | 0.011461 | 0.009009 | 0.006823 |   |   |   |   |   |   |   |   |   |
| 9  | 9  | 0        | 0.017192 | 0        | 0.005731 |   |   |   |   |   |   |   |   |   |
| 10 | 10 | 0.014286 | 0.008596 | 0.018018 | 0.013633 |   |   |   |   |   |   |   |   |   |
| 11 | 11 | 0        | 0.002865 | 0        | 0.000955 |   |   |   |   |   |   |   |   |   |
| 12 | 12 | 0        | 0.008596 | 0.018018 | 0.008871 |   |   |   |   |   |   |   |   |   |
| 13 | 13 | 0        | 0.002865 | 0        | 0.000955 |   |   |   |   |   |   |   |   |   |
| 14 | 14 |          | 0.005731 |          | 0.00191  |   |   |   |   |   |   |   |   |   |
| 15 | 15 |          | 0        |          |          |   |   |   |   |   |   |   |   |   |
| 16 | 16 | 0        | 0.011461 | 0        | 0.00382  |   |   |   |   |   |   |   |   |   |
| 17 | 17 | 0        | 0.011461 | 0        | 0.00382  |   |   |   |   |   |   |   |   |   |
| 18 | 18 | 0.014286 | 0.005731 | 0        | 0.006672 |   |   |   |   |   |   |   |   |   |
| 19 | 19 | 0.014286 | 0.005731 | 0        | 0.006672 |   |   |   |   |   |   |   |   |   |
| 20 |    |          |          |          | 0.01063  |   |   |   |   |   |   |   |   |   |
| 21 | 21 | 0.014286 | 0.011461 | 0        | 0.008582 |   |   |   |   |   |   |   |   |   |
| 22 |    |          |          |          | 0.010919 |   |   |   |   |   |   |   |   |   |
| 23 |    |          |          |          | 0.011448 |   |   |   |   |   |   |   |   |   |
| 24 | 24 | 0.014286 | 0.002865 | 0.018018 | 0.011723 |   |   |   |   |   |   |   |   |   |


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

|    | Α  | В        | С        | D        | E        | F        | G | Н | 1 | J | К | L |
|----|----|----------|----------|----------|----------|----------|---|---|---|---|---|---|
| 1  | 1  | 0.1      | 0.13467  | 0.099099 | 0.106318 | 0.028353 |   |   |   |   |   |   |
| 2  | 2  | 0.042857 | 0.100287 | 0.135135 | 0.090794 | 0.047937 |   |   |   |   |   |   |
| 3  | 3  | 0.057143 | 0.060172 | 0.036036 | 0.052765 | 0.02645  |   |   |   |   |   |   |
| 4  | 4  | 0.042857 | 0.031519 | 0.009009 | 0.027935 | 0.018926 |   |   |   |   |   |   |
| 5  | 5  | 0.042857 | 0.025788 | 0.045045 | 0.029414 | 0.015631 |   |   |   |   |   |   |
| 6  | 6  | 0.014286 | 0.022923 | 0.009009 | 0.015585 | 0.007833 |   |   |   |   |   |   |
| 7  | 7  | 0        | 0.014327 | 0        | 0.005601 | 0.008725 |   |   |   |   |   |   |
| 8  | 8  | 0        | 0.011461 | 0.009009 | 0.009567 | 0.009567 |   |   |   |   |   |   |
| 9  | 9  | 0        | 0.017192 | 0        | 0.004787 | 0.012405 |   |   |   |   |   |   |
| 10 | 10 | 0.014286 | 0.008596 | 0.018018 | 0.012972 | 0.006393 |   |   |   |   |   |   |
| 11 | 11 | 0        | 0.002865 | 0        | 0.003767 | 0.01597  |   |   |   |   |   |   |
| 12 | 12 | 0        | 0.008596 | 0.018018 | 0.00702  | 0.010998 |   |   |   |   |   |   |
| 13 | 13 | 0        | 0.002865 | 0        | 0.006471 | 0.024537 |   |   |   |   |   |   |
| 14 | 14 | 0        | 0.005731 | 0        | 0.006557 | 0.008947 |   |   |   |   |   |   |
| 15 | 15 | 0        | 0        | 0        | 0.006785 | 0.013017 |   |   |   |   |   |   |
| 16 | 16 | 0        | 0.011461 | 0        | 0.003832 | 0.00763  |   |   |   |   |   |   |
| 17 | 17 | 0        | 0.011461 | 0        | 0.006416 | 0.009088 |   |   |   |   |   |   |
| 18 | 18 | 0.014286 | 0.005731 | 0        | 0.004161 | 0.010125 |   |   |   |   |   |   |
| 19 | 19 | 0.014286 | 0.005731 | 0        | 0.009568 | 0.010169 |   |   |   |   |   |   |
| 20 | 20 | 0.014286 | 0.008596 | 0.009009 | 0.009897 | 0.009897 |   |   |   |   |   |   |
| 21 | 21 | 0.014286 | 0.011461 | 0        | 0.008406 | 0.011331 |   |   |   |   |   |   |
| 22 | 22 | 0        | 0.005731 | 0.027027 | 0.008478 | 0.018549 |   |   |   |   |   |   |
| 23 | 23 | 0.014286 | 0.020057 | 0        | 0.011141 | 0.013611 |   |   |   |   |   |   |
| 24 | 24 | 0.014286 | 0.002865 | 0.018018 | 0.006958 | 0.01106  |   |   |   |   |   |   |
| 25 | 25 | 0.014286 | 0.011461 | 0        | 0.008688 | 0.011114 |   |   |   |   |   |   |

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

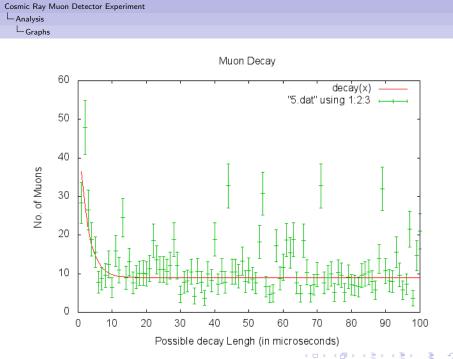
#### Analysis





| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Analysis        |          |            |
| Graphs          |          |            |

For fitting the curve we use the function :


$$decay(x) = C + Ae^{rac{-x}{ au}}$$

Cosmic Ray Muon Detector Experiment
Analysis
Graphs

For fitting the curve we use the function :

$$decay(x) = C + Ae^{\frac{-x}{\tau}}$$

After fitting the parameters we get:  $\tau = 2.16853 +/-0.1771 (8.168\%)$ A = 0.166771 +/-0.01875 (11.24%) C = 0.00556742 +/-0.0003015 (5.415%)



| Cosmic Ray Muon | Detector | Experiment |
|-----------------|----------|------------|
| Analysis        |          |            |
| Graphs          |          |            |

For fitting the curve we use the function :

$$decay(x) = C + Ae^{rac{-x}{ au}}$$

Cosmic Ray Muon Detector Experiment
Analysis
Graphs

For fitting the curve we use the function :

$$decay(x) = C + Ae^{\frac{-x}{\tau}}$$

After fitting the parameters we get: $\tau$ = 2.55366+/- 0.8498 (33.28%)A= 40.7394+/- 14.38 (35.31%)C= 8.96301+/- 0.4858 (5.42%)